
24 CROSSTALK The Journal of Defense Software Engineering April 1998

When a population is too large for exhaustive
study, as is the case for all possible uses of a soft-
ware system, a statistically correct sample must be

drawn as a basis for inferences about the population. In sta-
tistical testing of software, testing is treated as an engineering
problem to be solved by statistical methods. Figure 1 shows
the parallel between a classical statistical design and statistical
software testing.

Under a statistical protocol, the environment of use can
be modeled, and a statistically valid statement can be made
about the expected operational performance of the software
based on its test performance.

Statistical testing refers to the application of statistical
science to testing software-intensive systems. It begins with
characterizing all possible scenarios of use, includes analytical
advice on design for testability, and ends with random testing
to support estimates of the reliability of the system in field use.

A usage model is a characterization of all possible sce-
narios of software use at a given level of abstraction. Usage
models can be constructed before code is written, and the
model-building process can lead to improvements in the
software specification that enhance testability.

A test case is any traversal of the usage model. A random
test case is a traversal of the usage model based on state tran-
sitions that are randomly selected from a usage probability
distribution.

Certification means attaining reliability and confidence
goals for an environment of use following a protocol of dem-
onstration. This protocol must be well defined, open to evalua-
tion, and repeatable. As with any costly testing program, it is
important that low-quality software be rejected (for example,
when selecting commercial-off-the-shelf software), or returned
to development (for revision and verification) quickly and
inexpensively, and that testing continue only if progress toward
certification of the software is being made.

Engineering practice refers to procedures that can be
applied to problems of a recognizable type to achieve predict-
able and repeatable results. Engineering practices are derived
from an appropriate science base, but the theoretical details
of the science are organized, packaged, and often automated
to be unobtrusive during application. Engineering practices

Engineering Practices for Statistical Testing
Jesse H. Poore, University of Tennessee

Carmen J. Trammell, Software Engineering Technology, Inc.

This article describes the application of statistical science to the testing and evaluation
of software and software-intensive systems. Engineering practices are described for sta-
tistical testing based on a usage model, which is an engineering formalism that repre-
sents the use of a system in a specific environment or situation, or for a specific customer
class. Engineering practices for statistical testing are based on a view of software use as
a stochastic process and of software testing as a problem amenable to statistical solution.

are designed to get work done rapidly and correctly. The
statistical testing process involves the six steps depicted in
Figure 2. The engineering practices for each step are de-
scribed in the succeeding sections.

Operational Usage Modeling

Building Model Structure
Usage models characterize the infinite population of sce-
narios of use. Usage models are built from specifications, user
guides, or even existing systems. The user might be a human,
a hardware device, another software system, or some combina-
tion. More than one model might be constructed for a single
system if there is more than one environment of interest.

The basic task in model building is to identify the states
of use of the system and the possible transitions among states
of use. This information is encoded into highly structured
Markov chains [1] in the form of directed graphs and sto-
chastic matrices. Every possible scenario of use, at the chosen
level of abstraction, is represented by the model. Thus, every
possible scenario of use is represented in the analysis, trace-
able on the model, and potentially generated from the model
as a test case. Figure 3 portrays a simple usage model as a
directed graph with transition probabilities on the arcs.

Models should be designed in a standard form that con-
sists of connected submodels with a single entry and single
exit. States and arcs can be expanded like macros. Submodels

Figure 1. Parallel between a statistical design and software testing.

CROSSTALK The Journal of Defense Software Engineering 25April 1998

of canonical form can be collapsed to
states or arcs. This permits model vali-
dation, specification analysis, test plan-
ning, and test case generation to occur
on various levels of abstraction. The
structure of the usage models should be
reviewed with the specification writers,
the real or prospective users, the devel-
opers, and the testers. Users and specifi-
cation writers are essential to represent
the application domain and the work-
flow of the application. Developers get
an early opportunity to see how the
system will be used and look ahead to
implementation strategies that take
account of use and work-flow. Testers
are typically the usage model designers
and therefore get an early opportunity
to plan certification and to define and
automate the test environment.

Most usage modeling experience to
date is with embedded real-time sys-
tems, application program interfaces,
and graphical user interfaces. Models as
small as 20 states and 100 arcs have
proven highly useful. Typical models
are on the order of 500 states and 2,000
arcs; large models of more than 2,000
states and 20,000 arcs are in use. Even
the largest models developed to date are
small in comparison to similar math-
ematical models used in other fields of
science and engineering and are man-
ageable with available tool support.

Assigning Transition Probabilities
Transition probabilities among states in
a usage model come from historical or
projected usage data for the application.
Because transition probabilities repre-
sent classes of users, environments of

use, or special usage situations, there
may be several sets of probabilities for a
single model structure. Moreover, as the
system progresses through the lifecycle,
the probability set may change several
times based on maturation of system use
and availability of more information.

When extensive field data for simi-
lar or predecessor systems exists, a prob-
ability value may be known for every
arc of the model. For new systems, one
might stipulate expected practice based
on user interviews, user guides, and
training programs. This is a reasonable
starting point but should be open to
revision as new information becomes
available.

Generating Transition
Probabilities
An alternative to the direct assignment
of transition probabilities just discussed
is to generate them as the solution to a
system of equations [2]. Usage models
can be represented by a system of con-
straints (written as equations or in-
equalities in terms of the transition
probabilities as variables). The matrix of
transition probabilities can be generated
as the solution to the system. In gen-
eral, three forms of constraints are used
to define a model:
• Structural constraints are so named

because they define model structure:
the states themselves and both pos-
sible and impossible transitions
among the usage states.

• Usage constraints represent informa-
tion about known or expected pat-
terns of system use.

• Management constraints reflect
controls on the testing process to
enforce budget, schedule, or policy
decisions.
Probability values can be related to

each other by a function to represent
what is known about the relationship
without overstating the data and knowl-
edge. Most usage models can be defined
with extremely simple constraints.

Engineering Practice for
Operational Usage Modeling
Step 1. Identify the system boundary

and all hardware, software, and

human users of the software and the
stimuli they can send the software.

Step 2. Define the structure of the
usage model in terms of the possible
sequencing of stimuli. Identify any
areas where the software specifica-
tion will result in excessive (as op-
posed to essential) complexity and
cost in system development. Make
recommendations for possible sim-
plification.

Step 3. Define the important environ-
ments of use for the software, e.g.,
routine use, hazardous use, mali-
cious use, maximum capacity use,
and determine the number of envi-
ronments to be modeled. Continue
the process for each model.

Step 4. Define the transition prob-
abilities of the usage model.

Model Analysis and Validation

Long-Run Characteristics of the
Usage Model
A Markov chain is a thoroughly studied
mathematical model for which a stan-
dard set of statistics exists. In this case,
the standard statistics calculated for the
usage model have important interpreta-
tions for resource allocation, safety
analysis, test planning, and field sup-
port. Statistics that are routinely calcu-
lated from the model and used for these
purposes include the following:
Long-run occupancy of each state –

the usage profile as a percentage of
time spent in each state.

Occurrence probability – probability
of occurrence of each state in a
random use of the software.

Occurrence frequency – expected
number of occurrences of each state
in a random use of the software.

Figure 2. The statistical testing process.

Figure 3. Markov chain usage model.

Engineering Practices for Statistical Testing

26 CROSSTALK The Journal of Defense Software Engineering April 1998

First occurrence – for each state, the
expected number of uses of the
software before it will first occur.

Expected sequence length – the ex-
pected number of state transitions
in a random use of the software; the
average length of a use case or test
case.
Analytical results are studied during

model validation, and surprises are not
uncommon. Parts of systems thought to
be unimportant might get surprisingly
heavy use, while parts that consume a
large amount of the development bud-
get might see little use. Since a usage
model is based on the software specifi-
cation rather than the code, it can be
done early in the lifecycle to inform the
development process as well as testing
and certification.

Engineering Practice for Model
Analysis and Validation
Step 1. Generate the standard analyti-

cal results for the model. Interpret
analytical values in terms of the
specification and expected usage to
validate their correctness or reason-
ableness.

Step 2. Change the model structure or
constraints if necessary. Changes to
the structure may be needed to
correctly represent the specification;
changes to constraints may be
needed to correctly represent usage
or test management issues.

Step 3. If the model has been changed,
repeat Steps 1 and 2.

Step 4. Generate some test cases and
confirm that they look realistic; if
not, return to Step 2.

Step 5. Use the model and its implica-
tions to inform development activi-
ties such as performance planning,
correctness verification, safety analy-
sis, and test planning.

Test Planning

Crafted (Nonrandom) Test Cases
There are compelling reasons for creat-
ing special, nonrandom test cases. Such
testing can remove uncertainty about
how the system will perform in various
circumstances and can contribute to

effectiveness and control over all test-
ing, both crafted and random.

Following are types of nonrandom
testing that may be useful prior to ran-
dom testing.
Model coverage tests. Using just the

structure of the model, a graph-
theoretic algorithm generates the
minimal sequence of test events
(least cost sequence) to cover all arcs
(and therefore all states). If it is
practical to conduct this test, it is a
good first step in that it will confirm
that the testers know how to con-
duct testing and evaluate the results
for every state of use and every pos-
sible transition.

Mandatory tests. Any specific test
sequences that are required on con-
tractual, policy, moral, or ethical
grounds can be mapped onto the
model and run.

(Nonrandom) regression tests. Regres-
sion test suites can be mapped to the
model. This is an effective way to
discover the redundancy in the test
suite and assess its omissions.

Critical but unlikely use. Critical
states, transitions, and subpaths that
would have low likelihood of arising
in a random sample can be identi-
fied from the model and tested by
crafted cases.

Importance tests. Importance sam-
pling can be implemented by add-
ing management constraints and an
objective function that will produce
the transition probabilities that will
emphasize the “value” in the sam-
pling process.

Partition testing. The usage model can
be used to identify and define parti-
tions to gain sampling efficiency.

Random Test Cases
Random test cases may be automatically
generated from the usage model. Each
test case is a “random walk” through the
model, from the initial state to the ter-
minal state. Test cases may be generated
as scripts for human testers or as input
sequences for automated testing. Post-
processing of test cases often further
facilitates human or automated evalua-
tion. One may generate as large a set of
test cases as the budget and schedule

will bear and establish bounds on test
outcomes before incurring the cost of
performing the tests.

Engineering Practice for Test
Planning
Random testing should begin only after
all crafted testing has been completed.
Step 1. Using the expected test case

length derived during model analy-
sis, estimate and generate the num-
ber of random test cases that can be
run within the schedule and budget.

Step 2. Define the best-case scenario.
Assume that no failures occur in
random testing, and determine the
values of product quality and pro-
cess sufficiency that can be achieved
by running the number of test cases
generated in Step 1. (These mea-
sures are described in the “Product
and Process Measurement” section.)

Step 3. Define the worst-case scenario.
Assume some profile of failures and
construct a failure log based on the
profile. (This may be done for sev-
eral scenarios.) Again, determine the
values of product and process certi-
fication measures under the sce-
nario. The comparison of these
values with actual certification goals
will reveal how much bad news the
budget and schedule can absorb.

Step 4. Analyze the coverage of model
states, arcs, and paths that will oc-
cur.

Step 5. Analysis might show that test-
ing as planned and budgeted can-
not, even in the case of no failures,
satisfy requirements for model cov-
erage or demonstrable reliability.
Given this fact, one may choose to
either revise goals or revise plans.

Testing
It is essential to the integrity of the
certification process to maintain experi-
mental control throughout random
testing. Experimental control refers to
complying with the assumptions associ-
ated with a statistical protocol. Results
must be evaluated consistently. The
team must ensure a common under-
standing of all test materials and poli-
cies so that consistent test decisions are

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 27April 1998

made. Other steps to ensure experimen-
tal control are given in [3, Chap. 17].

Engineering Practice for Testing
Step 1. Hold the specification and

oracle constant for each version of
the software that is tested.

Step 2. Sustain the conditions in the
environment throughout testing.

Step 3. Monitor the performance of
human testers to prevent “drift.”

Step 4. Run test cases in the order in
which they are generated.

Step 5. Schedule regular communica-
tion among testers for discussion of
matters that may affect test judg-
ment.

Step 6. Log all failures.
Step 7. Maintain at least two testing

chains, i.e., testing records encoded
as Markov chains, one for the cur-
rent version of the software and one
for the history of testing across all
versions. The current-version testing
chain will be used for certification
and stopping decisions. The histori-
cal testing chain will be used to
study the development and testing
processes.

Step 8. If one or more failures occur
during testing of the current ver-
sion, a decision must be made
about whether to stop testing.
Many factors may be involved,
including the nature of the failures,
schedules, and organizational poli-
cies. Monitor reliability, confi-
dence, and convergence of the
testing chain to the usage model to
guide stopping decisions.

Step 9. If no failures are seen during
testing, base stopping decisions on
reliability, confidence, and conver-
gence measures together with re-
maining schedules and budgets.

Product and Process
Measurement
The usage model from which the test
cases are generated is called the “usage
chain.” A chain of initially identical
structure is developed to record actual
testing experience, called the “testing
chain.” The progress of testing is moni-
tored by tracking measures calculated
from these two chains.

Product Measures
A reliability measure is calculated from
the testing chain along with confidence
intervals. This reliability is defined
strictly in terms of the failure experi-
ence recorded in the testing chain; there
are no other mathematical assumptions.
This definition of reliability is appli-
cable whenever testing has revealed one
or more failures. (When testing reveals
no failures, distributional models
should be used, e.g., [3, Chap. 5; 4].)

Process Measures
An information theoretic comparison
of the usage and testing chains is com-
puted to assess the degree to which the
testing experience has become represen-
tative of expected field use. Its graph
will have a terrace-like appearance of
declines and plateaus. The trend in the
measure reveals the rate at which the
usage and testing chains are becoming
indistinguishable. As the two converge,
it becomes less likely that new informa-
tion will be gained by further testing.

Certification
The certification process involves ongo-
ing evaluation of the merits of continued
testing. Stopping criteria are based on
reliability, confidence, and uncertainty
remaining. Decisions to continue testing
are based on an assessment that the goals
of testing can still be realized within the
schedule and budget remaining.

In most cases, users of statistical
testing methods release a version of the
software in which no failures have been
observed. Reliability estimates such as
those in [3, Chap. 5; 4] are recom-
mended in this case.

Software is sometimes released with
known faults. If the test data includes
failures, reliability and confidence may
be calculated from the testing chain.
The reliability measure computed in
this manner reflects all aspects of the
sequences tested, including the prob-
ability weighting defined by the usage
model.

Certification is always relative to a
protocol, and the protocol includes the
entire testing process and all work
products. An independent audit of
testing must be possible to confirm

correctness of reports. An independent
repetition of the protocol should pro-
duce the same conclusions to within
acceptable statistical variation.

Conclusions
The model construction and validation
process is an investment in understand-
ing how the system will be used. Several
calculations flow directly from the us-
age models without further assump-
tions that quantify the size and com-
plexity of the testing problem. For
many practitioners, this quantitative,
defensible characterization of size and
complexity provides insights that are
overwhelming. Practitioners have vari-
ously slashed requirements, pruned user
options, erected firewalls, extended
schedules, extended budgets, initiated
test automation efforts, and decimated
reliability goals. If one believes that the
usage model accurately captures the
capability described in the specifica-
tions and that the probabilities repre-
sent the intended environment of use,
the calculations and conclusions based
on them are inescapable.

Work in progress is focused on com-
position of usage models from compo-
nents, synthesizing information about
the whole from the components, and
combining testing information across
the product lifecycle. u

About the Authors
Jesse H. Poore is profes-
sor of computer science
at the University of
Tennessee. He works
with industrial and
government sponsors on
practical software engi-

neering problems. He served as assistant to
the president for information technology
and professor of computer science at the
Georgia Institute of Technology. In 1983,
he was executive director of the Commit-
tee on Science and Technology in the U.S.
House of Representatives. From 1971 to
1980, he was associate professor of math-
ematics and director of the Computing
Center at Florida State University. He
holds a doctorate in information and
computer science from Georgia Tech.

Department of Computer Science
University of Tennessee, 107 Ayres Hall

Engineering Practices for Statistical Testing

28 CROSSTALK The Journal of Defense Software Engineering April 1998

Knoxville, TN 37996-1301
Voice: 423-974-5784
Fax: 423-974-4404
E-mail: poore@cs.utk.edu

Carmen J. Trammell is
a software consultant
with Software Engineer-
ing Technology, Inc.
She was formerly re-
search assistant profes-
sor and manager of the

Software Quality Research Laboratory in
the Department of Computer Science at
the University of Tennessee. She has held
technical and management positions in
software projects through Oak Ridge
National Laboratory, Martin Marietta
Energy Systems, and Software Engineer-
ing Technology and currently works with
industry and government on software

engineering process definition and im-
provement. She has done software devel-
opment and testing for the U.S. Army
and the U.S. Navy, academic teaching on
military bases overseas, industrial training
for Department of Defense (DoD) con-
tractors, and research and development
under contract to the DoD Software
Technology for Adaptable, Reliable Sys-
tems Program. She has a master’s degree
in computer science and holds a doctor-
ate in psychology from the University of
Tennessee.

Software Engineering Technology, Inc.
5516 Lonas Road, Suite 110
Knoxville, TN 37909
Voice: 423-450-5151 ext. 240
Fax: 423-450-9110
E-mail: trammell@toolset.com
Internet: http://www.toolset.com

References
1. Kemeny, J.G. and J.L. Snell, Finite

Markov Chains, Van Nostrand,
Princeton, N.J., 1960.

2. Walton, G.H., Generating Transition
Probabilities for Markov Chain Usage
Models, Department of Computer
Science, University of Tennessee, Knox-
ville, Tenn., 1995.

3. Poore, J.H. and C.J. Trammell,
Cleanroom Software Engineering: A
Reader, Oxford, England, Blackwell
Publishers, 1996.

4. Miller, K.W., et al., “Estimating the
Probability of Failure When Testing
Reveals No Failures,” IEEE Transactions
on Software Engineering, January 1992.

Tenth Annual Software Technology Conference
(STC ’98)

Dates: April 19-23, 1998
Location: Salt Palace Convention Center, Salt Lake City,

Utah
Co-hosts: Ogden Air Logistics Center commander and

the Software Technology Support Center
Contact: Dana Dovenbarger

Voice: 801-775-4932 DSN 777-7411
E-mail: dovenbar@oodis01.hill.af.mil

IEEE Computer Society International Conference
on Computer Languages 1998

Dates: May 14-16, 1998
Location: Loyola University Chicago, Chicago, Ill.
Sponsors: IEEE Computer Society Technical Committee

on Computer Languages in cooperation with the Asso-
ciation for Computing Machinery Special Interest
Group on Programming Languages

Contact: Internet: http://www.math.luc.edu/iccl98/

7th IEEE North Atlantic Test Workshop
Dates: May 28-29, 1998
Location: West Greenwich, R.I.
Subject: Provides a forum for discussions on the latest

issues relating to higher quality, more economical, and
more efficient testing methods and designs. The work-
shop will focus on “Reliability and Testing Issues for
the 21st Century.”

Coming Events
Sponsors: IEEE Computer Society, Test Technology

Technical Committee, and the University of Rhode
Island

Contact: Jim Monzel
Voice: 802-769-6428
Fax: 802-769-7509
E-mail: jmonzel@vnet.ibm.com

Quality Week ’98, Conference “Countdown to 2000”
Dates: May 26-29, 1998
Location: San Francisco, Calif.
Subject: Focuses on advances in software test technology,

quality control, risk management, software safety, and
test automation, software analysis methodologies, and
advanced software quality processes.

Contact: Rita Bral
Voice: 800-942-SOFT (800-942-7638)
Fax: 415-957-0730
E-mail: qw@soft.com
Internet: http://www.soft.com/QualWeek/QW98

Conference on Risk Management Software
Engineering Institute (SEI)

Dates: June 8-10, 1998
Location: Crystal Gateway Marriott, Crystal City, Va.
Sponsor: Software Engineering Institute
Contact: SEI Customer Relations

Voice: 412-268-5800
Fax: 412-268-5758
E-mail: customer-relations@sei.cmu.edu

Software Engineering Technology

